Differential expression of cardiac titin isoforms and modulation of cellular stiffness.

نویسندگان

  • O Cazorla
  • A Freiburg
  • M Helmes
  • T Centner
  • M McNabb
  • Y Wu
  • K Trombitás
  • S Labeit
  • H Granzier
چکیده

Extension of the I-band segment of titin gives rise to part of the diastolic force of cardiac muscle. Previous studies of human cardiac titin transcripts suggested a series of differential splicing events in the I-band segment of titin leading to the so-called N2A and N2B isoform transcripts. Here we investigated titin expression at the protein level in a wide range of mammalian species. Results indicate that the myocardium coexpresses 2 distinct titin isoforms: a smaller isoform containing the N2B element only (N2B titin) and a larger isoform with both the N2B and N2A elements (N2BA titin). The expression ratio of large N2BA to small N2B titin isoforms was found to vary greatly in different species; eg, in the left ventricle the ratio is approximately 0.05 in mouse and approximately 1.5 in pig. Differences in the expression ratio were also found between atria and ventricles and between different layers of the ventricular wall. Immunofluorescence experiments with isoform-specific antibodies suggest that coexpression of these isoforms takes place at the single-myocyte level. The diastolic properties of single cardiac myocytes isolated from various species expressing high levels of the small (rat and mouse) or large (pig) titin isoform were studied. On average, pig myocytes are significantly less stiff than mouse and rat myocytes. Gel analysis indicates that this result cannot be explained by varying amounts of titin in mouse and pig myocardium. Rather, low stiffness of pig myocytes can be explained by its high expression level of the large isoform: the longer extensible region of this isoform results in a lower fractional extension for a given sarcomere length and hence a lower force. Implications of our findings to cardiac function are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle.

Small (N2B) and large (N2BA) cardiac titin isoforms are differentially expressed in a species-specific and heart location-specific manner. To understand how differential expression of titin isoforms may influence passive stiffness of cardiac muscle we investigated the mechanical properties of mouse left ventricular (MLV) wall muscle (expressing predominantly the small titin isoform), bovine lef...

متن کامل

Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.

BACKGROUND Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunc...

متن کامل

Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin express...

متن کامل

Phosphorylation of titin modulates pas- sive stiffness of cardiac muscle in a titin

Question: How does phosphorylation of titan affect cardiac function? Background: Sarcomeres are the repeating contractile subunits from which the myofibrils of striated muscle are built. Titin is a large sarcomeric protein involved in muscle elasticity and myofibril scaffolding, which provides passive tension to muscle based on physiological demands. In mammalian cardiac tissue, there are two i...

متن کامل

Cellular Biology Hyperphosphorylation of Mouse Cardiac Titin Contributes to Transverse Aortic Constriction-Induced Diastolic Dysfunction

Rationale: Mechanisms underlying diastolic dysfunction need to be better understood. Objective: To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction. titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2000